Past-Oriented Behavioural Bias: A study on SandP and TEPIX Indexes

Mohsen Mehraraa, Saeid Tajdinia, MirJamal Maghsoudib,*, Majid Lotfi Ghahroudb, Niloufar Ebrahimiyanc, Farzad Jafarib

aFaculty of Economics, University of Tehran, Tehran, Iran
bFaculty of management, University of Tehran, Tehran, Iran
cFaculty of social sciences and economics, Alzahra University, Tehran, Iran

\textbf{ABSTRACT}

Behavioral finance had been becoming a fast-growing field of study in the past few years and because of the importance of investors' behavior in market performance, it's extremely noteworthy. By studying biases from their orientation perspective, we can divide them into two major groups, past-oriented, and current-oriented biases. In this research, a model had been developed for the past-oriented behavioral bias, which is closely related to the random walk theory. The research sample included the daily price information of 9 different industry indices in the Tehran Exchange Price Index (TEPIX), the index of 50 Top Companies in the Tehran Stock Exchange, and the SandP index in the New York Stock Exchange from 2011/25/03 to 2019/19/03. The results of the ARIMA model based on Markov switching models were measured for the degree of rigidity of these indexes by random walk theory, and then the effect of past-oriented behavioral bias was calculated in each of these 12 indexes by developing a new model. The results indicate that the cement index had the highest past-oriented behavioral bias (57%), followed by the top 50 companies index (46%), chemicals (41%), and oil product index (12%). However, the SandP index had no past-oriented behavioral bias.

\section{1 Introduction}

As concepts develop, all of them eventually going to expand multidisciplinary, and finance isn't an exception in this regard. The combination of finance with psychology and sociology in some layers because of its use both in business and the academic area is nowadays one of the most notable fields of study which called behavioral finance. behavioral finance is investors' struggle to find a way to taking and giving risks and gain Jaiswal and Kamil [29]. First studies about behavioral finance had been taken by two famed psychologists Tversky and Kahneman in 1974. Behavioral finance studies investors' deviations and anomalies from traditional finance assumptions during the decision-making process, it can be about portfolios, asset pricing, and market efficiency directly or indirectly. As Graham et al. [20]...
said this field of study focus on psychological factors which leads to a common pattern in investment practitioners. Investor’s anomalies come from various types of biases Sharma and Dibrugarh [50], Hirshleifer [25] and Shiller [52]. Nowadays experimental methods had been became a practical way for assessing these deviations and gives us a better understanding of behavioral finance Duxbury [14]. Theories like prospect theory Kahneman [34], overconfidence Matsumoto et al. [38], Michaelova et al. [40] anchoring Chandra [10], Sadi et al. [48], mental accounting Thaler [62], and other studied biases Aren et al. [3], Bogan et al. [7], Hackbarth[23], Howard[26], Lacalle[36], Zhou and Pham[69]. Moreover being aware of behavioral biases will lead investors to perform more professionally Suresh [58] and eventually more efficient market. However, overcome to these biases isn't such a straightforward approach to do but fortunately, some studies making light in solving this dilemma.

In this research, behavioral biases were introduced past-oriented. Then, by developing a model for the past-oriented behavioral bias, 12 indicators, including Tehran exchange price index (TEPIX), top 50 companies index, and 9 indices of different industries, including bank, cement, oil products, machinery, chemicals, automobiles, sugar, food but sugar, metal minerals in Tehran Stock Exchange, and SandP index in New York Stock Exchange were measured from 2011/25/03 to2019 /19/03. Past-oriented behavioral bias, which is closely related to the theory of Random Walk, reflects the impact of past information on prices. Regarding the goal of this research, namely, modelling the past-oriented behavioral bias, the behavioral bias that constitutes the past-oriented behavioral bias is generally divided into two general strategies of momentum or contrarian. In both of these two strategies, attempts have been made to make predictive performance and additional returns using the past performance. In general, the momentum strategy means the continuation of the current trend found in the ARIMA model with a positive coefficient. The contrarian strategy means the opposite of the current trend, which is equivalent to the negative ARIMA coefficient. The second section of the article is devoted to the theoretical and experimental foundations. In the third section, we introduce the research methodology and modelling of a new model to study the adherence of Tehran Stock Exchange indices to the Random Walk method and hence the effect of past-oriented behavioral bias. In the fourth section, the experimental findings of the research are presented. In the final section, the results are summarized.

2 Literature Review

Traditional finance dominated investors’ decision-making assumptions for many years. One of the most important obligations in traditional finance is investors practice rationally and prices in the market reflect all accessible information. Rational investors never disarrange by cognitive errors, are self-controlled, and risk-averse. Later on, neoclassical finance appeared and concepts like CAPM, EMH, and arbitrage-based option pricing theories got the appeal. Concerning rational players, the market will perform under the EMH assumption. An efficient market is distinguished as a market that reacts to the new information instantly and all the information is reflected in prices so there is no way for prediction of prices Fama et al. [16], therefore research about the efficient market was based on the random walk hypothesis generally. In this regard, Fama [17] introduced the efficient market theory which claims market players can be confident about reflecting all accessible information about securities on their prices and the prices have equilibrium with their risk. But observing facts like the financial crisis, market fluctuations and seasonal effects questioned standard finance assumptions. Fama [17], Samuelson [49] and Roberts [47] proposed three-level of information efficiency in the capital market: Weak-form efficiency applies to the market in which prices are totally adjusted with past information. Semi-strong efficiency refers to the market that not only past information doesn't make any superiority in investment
decisions but also all public information will not make any advantages for investors. Strong-form efficiency: in this market, any kind of information like past, current and confidential are reflected in prices so there would be no advantages in the decision-making process of investment. Bernstein [5] Showed investors in the face of uncertainty have irrationality, inconsistency, and incompetence patterns. Thus traditional finance assumption has been denied by Daniel Kahneman and Amos Tversky, two outstanding psychologists, who had the very beneficial theoretical and experimental work for the transition of finance to a new phase during the 1980s named behavioral finance Nofsinger [41]. Behavioral finance developed on the "Bounded Rationality" assumption Uzar and Akkaya [66]. This concept refers to rational decision making which considers cognitive restrictions, and knowledge and computational dimensions. These limitations come from human nature like being emotional and limitation of knowledge. In complicated and risky situations because investors' tendency to predilections decisions is more predictable and non-optimal, behavioral biases are defined as systematic errors Chen et al. [11]. Researchers have defined some biases as psychological specifications which have notable relevance with the decision-making process Shehzad et al. [53].

In standard finance investors' decision-making should follow the risk and probability principles, but in fact, there are various biases that we'll discuss pursuant. Shiller argued about the facility of random movement in the stock market by questioning strong market efficiency by behavioral biases Shiller [52]. Bondt and Thaler [12] Asserted that people overreact to the sudden and notable news. And winner-loser effect shows that the occurred gain and loss cannot be explained by CAPM beta and it has a reversal pattern with overreaction Bondt and Thaler [9]. The law of chance says a small sample of the total population can have a highly representative means to people and it plays a critical role in intuitive assessment by investors Kahneman and Tversky [31-32-33]. The anchoring effect means when the assessment of information is set initially, an anchor occurs and other information or analysis may not have enough effect on investor decision making Tversky and Kahneman [64]. The framing effect also influences investors' decisions and it refers that the same problem can have different interpretations in people's minds Tversky and Kahneman [65]. Transparency and framing effect have tight accommodation of bounded rationality Tversky and Kahneman [63]. Thaler [63] Pointed out another bias named "Mental Accounting" which represents people divers their money based on varying criteria into different accounts and treat them differently. Generally, investors think they are smarter and more informative than they are Shefrin [51]. Surprisingly experienced investors make more behavioral biases than others Chen et al. [11]. The stock split effect is shown, although there should be no difference in companies' growth after stock splitting, the evidence says the probability of price raising is more Desai and Jain [13], and Ikenberry et al. [28]. The dividend yield effect designates if a stock has a high dividend it will perform better than an average of the market Litzenberger and Ramaswamy [37] and Keim [35]. The insider transaction effect signifies that if anyone has specific information about the company, besides gaining more profit, can predict stock price movements Finnerty [18]. The Country effect refers to any of the calendar and non-calendar effects that can show the distinctive effects related to the economic system that governs it Gultekin and Gultekin [22]. Hence Tajdini et al. [57] can be a strong proof of this claim. The Neglected firm's effect means firms that got underestimated by institutional investors usually have a better outcome Arbel and Strebel [2]. Another interesting effect is mean aversion over the long run which means everything will drift back into long-run mean ultimately. Particularly biggest loser investors will become the biggest beneficial investors in 3 to 5 years De Bondt and Thaler [9]. The market overreaction effect alludes to situations when investors overreact to recent news such as future earnings announcements Kahneman and Tversky [64]. On the other hand, Market under-reaction effect refers to a situation that activists are less reactionary to recent news Abarbanel and Bernard [1]. And
reacting to news is related to priority and importance of them, it means if there is already bad news
about a company good news won’t affect the prices that much Hasani et al. [24]. By stepping back and
looking generally we can have 2 major segmentations about biases, past-oriented, and current-oriented
behavioral biases. There are numerous studies about the proximity of past-oriented behavioral biases
with random walk theory in different stock exchanges over the world such as Huber [27], Grieb and
Reyes [21], Zhu [69], Chakradhara and Narasimhan [8], Nwidobie and Barine Michael [43], Pandey
and Samanta [44], Bilal Nawaz et al. [6], Tehrani et al. [60], Nourbakhsh et al. [42], Tas and Guleroglu
Atac [58]. Although [30] found out behavioral biases has significant and revers effect on stock return,
but behavioral finance isn’t dedicated to the stock market, there are also studies about customer behavior
and bank funding stability in the banking industry Tehrani and et al. [59], or Tajdini and et al [57]
argued about the fluctuation in the exchange rate is affected by economic-behavioral component and
[39] biases has more effect in currency market than stock market.
The autoregressive integrated moving average (ARIMA) model has been successfully used as a popular
linear model for economic time series forecasting Wang et al. [67]. They applied a hybrid model, which
is distinctive in integrating the advantages of ARIMA and ANNs (artificial neural networks) in model-
ling the linear and nonlinear behaviors in the data set. In addition, some studies are related to other
aspects of behavioral economics by using the ARIMA model. For instance, Porto et al. [45] worked on
the effects of price discounts on revenues received from services. They studied the commercial cycle
from the viewpoint of operant behavioral economics. Many other econometric, statistic models and
academic researchers can be used in behavioral economics and behavioral finance. A time series that
consists of two components: the major component that follows an autoregressive integrated moving
average (ARIMA) process and the noise component is very difficult to estimate. To solve the problem,
Wong and Miller [68] adopted and developed the theory of repeated time series. So, they developed
the theory of the ARIMA with noise (ARIMAN) model. In addition, they relax the normality assumption
that both major and noise components can follow any distribution, not necessarily follow a normal
distribution. They derived some properties for the ARIMAN model on the identification, estimation,
and forecasting for each component. They also used their proposed model for real data. The limitations
of the model developed by Wong and Miller [68] include: The variances of both components are con-
stants, and the number of repetitions cannot be changed. To overcome the limitations in Wong and
Miller [68] apply the Kalman filter technique to improve the theory to relax both conditions in (i) and
(ii). They develop the ML estimation to estimate the ARIMAN model for each component and they
suggest an approach to conduct forecasting.
In another study, Siami-Namini et al. [54] studied a comparative analysis of forecasting financial time
series using ARIMA, LSTM, and BiLSTM. The results of their study show that additional training of
data and thus BiLSTM-based modeling offers better predictions than regular LSTM-based models.
More specifically, it was observed that BiLSTM models provide better predictions compared to ARIMA
and LSTM models. It was also observed that BiLSTM models reach the equilibrium much slower than
LSTM-based models. Also, Assous et al. [4] worked on how international Market Indices Estimate
TASI’s Movements by ARIMA Model. This study investigates the effectiveness of six of the key in-
ternational indices in estimating the Saudi financial market (TADAWEUL) index (TASI) movement.
Moreover, we can find some studies in the banking system. For instance, Eti et al. [15] worked on
predicting the role of Islamic banking on sustainable economic development by the ARIMA
Model. There are more researches in this area such as A hybrid statistical approach for stock market
forecasting based on artificial neural network and ARIMA time series models Rathnayaka and Sen-
evratna [46], or a comparative analysis of forecasting financial time series using Arima, lstm, bilstm
Siami et al. [54], and can International Market Indices Estimate TASI’s Movements? The ARIMA Model Assous [4], and predicting the role of Islamic banking on sustainable economic development: An analysis for Turkey with ARIMA model.

3 Methodology

Data were collected through the library method by referring to the libraries and stock exchange database. The data collection instruments were a computer, internet, and content analysis, i.e., study and analysis of the content of the books and studies carried out by others in this regard, which could be useful in this research. Finally, two basic and important principles were taken into account in the preparation of statistics and data. In terms of time, the trend of the stock exchange during seven years, from 2011/25/03 to 2019/19/03, was considered, and its efficiency and inefficiency in the two mentioned indices were studied. Regarding the place, this study analyzed the activity of Tehran and New York Stock Exchanges and companies listed in these markets. Statistical society: The statistical society of this study comprised of the companies listed in the Tehran and New York Stock Exchanges. Statistics and information were obtained from the top 50 companies listed in Tehran Stock Exchange and the SandP index on New York Stock Exchange. The statistics and data about these two indices were calculated daily, during which 2511 pieces of data were collected.

3.1 The Weak-Form Efficiency

A capital market is said to be weakly Efficient, or to satisfy weak form efficiency if it fully incorporates the information in past stock prices. Thus, the preceding strategy would not be able to generate profits if weak form efficiency holds. Often, weak-form efficiency is represented mathematically as:

\[P_t = P_{t-1} + \text{Expected return} + \text{Random error} \]

Equation 1 states that the price today is equal to the sum of the last observed price plus the expected return on the stock plus a random component occurring over the interval. The last observed price could have occurred yesterday, last week, or last month, depending on the sampling interval. The expected return is a function of a security’s risk and would be based on the models of risk and return in previous chapters. The random component is due to new information about the stock. It could be either positive or negative and expects zero. The random component in any period is unrelated to the random component in any past period. Hence, this component is not predictable from past prices. If stock prices follow Equation 1, they are said to follow a random walk. The market efficiency was determined by Box-Jenkins methodology, as follows:

\[Y_t = \phi_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \theta_2 \varepsilon_{t-2} - \ldots - \theta_q \varepsilon_{t-q} \]

(2)

Autoregressive: this method is used to determine the presence of a non-zero significant relationship between existing efficiency series and efficiency of former periods. A zero-significant relationship shows the predictability of stock efficiency from the previous efficiencies. yt is today’s price, yt-p is previous days’ price, εt is today’s random error value, which has to be white noise based on efficient market hypothesis, and εt-q is a disturbance of previous periods. Where \(\Phi_i \) and \(\theta_j \) are autocorrelation coefficients and moving to mean with prices of previous periods, respectively, which should not be significant based on the efficient market hypothesis in any of the previous periods. P and q are the duration of autocorrelation and moving mean lags. These values can be determined by testing the hypothesis. Also, by using information criteria, the best state for p and q and optimal model, i.e., fitting
and simplicity of the model, can be determined. Three methods can be used to analyze whether the disturbance is white noise in EViews:

Since the parameters of econometric models typically have major changes over the period under study, to determine market efficiency in weak form based on Markov switching models and the Box Jenkins model under both low fluctuating and high fluctuating regimes by the autoregressive method. To test the existence of a non-zero significant relationship between the series of current returns and the values of returns in previous periods, the significant difference of zero indicates the ability to predict stock returns from past returns. In Equation 3, y_t is today’s price, y_{t-1} is the price of the day before, and ε_t is the random error value today which, according to the efficient market hypothesis, must be white noise, where φ_1 and φ_2 are the autoregressive coefficients in both regimes one and two, respectively. Which, according to the efficient market hypothesis, should not be significant in any of the preceding periods.

$$y_t = \begin{cases} \varphi_1 y_{t-1} + \varepsilon_t & \text{if } S_t = 1 \\ \varphi_2 y_{t-1} + \varepsilon_t & \text{if } S_t = 2 \end{cases}$$ (3)

3.2 Research Modelling

Past-Oriented Behavioral Bias (POBB): Behavioral bias in two general terms is the momentum strategy, the continuation of the current trend found in the Arima model with a positive coefficient. And the contrarian strategy means the opposite of the current trend, which is equivalent to the negative Arima coefficient.

In this study, we modelled the effects of Past-oriented behavioral bias in the stock market as below as shown in Equation 4, given. The exponential function was used to more accurately assess behavioral biases. The logic of using the exponential function is to increase the effect of behavioral biases incrementally. Considering the attribute of the exponential function of the effect of behavioral biases in higher coefficients, AR (1) is higher than the time when the AR (1) coefficients are shorter.

$$POBB = \left[EXP \left(Coefficient \ AR \ (1)\right) - 1 \right] \% * (CDR1 + CDR 2)$$ (4)
Where AR (1) is autoregressive coefficients in OLS Model, CDR1 is the constant duration of regime 1 in the condition of disobedience of the random walk in the Markov switching model, CDR2 is the constant duration of regime 2 in the condition of disobedience of the random walk in the Markov switching model and POBB is past oriented behavioral bias.

4 Findings

Analyzing the data of daily price information of 9 different industry indices of the bank, cement, oil products, machinery, chemicals, automobiles, sugar, food except sugar, metal minerals, index of 50 Top Companies and price index (TEPIX) in Tehran Stock Exchange and SandP index in the New York Stock Exchange for the period from 2011/25/03 to 2019/19/03. By performing three criteria including (1) Durbin-Watson statistics (2) simple auto-correlation hypothesis, and (3) Lagrange Multiplier test of serial correlation, and following findings were obtained considering the structural failures. Based on Durbin-Watson statistics and inconsistency of the random walk hypothesis, there should be no consecutive correlation between residuals or disruption components. As a result, the value of this statistic in Durbin-Watson statistics must be close to 2 concerning column 1 of Table 1. The spacing of this column's numbers with 2 -except for the SandP index of the New York Stock Exchange (2.01) and the oil products index of Tehran Stock Exchange (1.76), so it can be concluded that the disruption component of the other ten indicators is not white noise.

Table 1: Durbin-Watson Statistics, Simple Auto-correlation Hypothesis, And Lagrange Coefficient Test of Serial Correlation

<table>
<thead>
<tr>
<th>Index Name</th>
<th>Durbin-Watson Statistics</th>
<th>Prob of Correlogram of Residuals</th>
<th>Prob of Serial Correlation Lagrange Multiplier Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks</td>
<td>1.48</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Cement</td>
<td>1.107</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Oil Products</td>
<td>1.76</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Machinery</td>
<td>1.53</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Chemicals</td>
<td>1.35</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Automobiles</td>
<td>1.47</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Sugar</td>
<td>1.44</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Food Except For Sugar</td>
<td>1.36</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Metal Minerals</td>
<td>1.38</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>50 Top Companies</td>
<td>1.23</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Price Index (TEPIX)</td>
<td>1.31</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>SandP Index</td>
<td>2.01</td>
<td>0.82</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Simple auto-correlation hypothesis test that says there shouldn’t be any jags out of a 95% confidence interval, i.e., the auto-correlation is not significant. According to column 2 of Table 1, the significance level is close to zero in the 11 different Tehran Stock Exchange indices, and only in the SandP index of the New York Stock Exchange with a value of 0.82 is well far from zero, which indicates the ideal condition for the white noise disturbance component of the SandP index in the New York Stock Exchange. Results of Lagrange Multiplier test series correlation also confirm the two other hypothesis tests. P-Value for Lagrange coefficient test of series correlation According to column 4 of Table 1, the significance level is close to zero in the 11 different Tehran Stock Exchange indices, and only in the SandP index of the New York Stock Exchange which is well far from zero with a value of 0.11, which
indicates the ideal condition for the white noise disturbance component of the SandP index of the New York Stock Exchange.

Table 2: ARIMA Model Using Simple Regression (OLS Regression)

<table>
<thead>
<tr>
<th>Index Name</th>
<th>Coefficient AR (1)</th>
<th>T-Statistic</th>
<th>F-Statistic</th>
<th>Prob</th>
<th>F-Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks</td>
<td>0.26</td>
<td>11.9</td>
<td>142.2</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Cement</td>
<td>0.45</td>
<td>22.15</td>
<td>490.6</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Oil Products</td>
<td>0.12</td>
<td>5.3</td>
<td>28.7</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Machinery</td>
<td>0.32</td>
<td>15.2</td>
<td>232.7</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Chemicals</td>
<td>0.35</td>
<td>16.4</td>
<td>270</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Automobiles</td>
<td>0.26</td>
<td>12.2</td>
<td>148</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Sugar</td>
<td>0.33</td>
<td>15.8</td>
<td>248.9</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Food Except For Sugar</td>
<td>0.32</td>
<td>15</td>
<td>225</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Metal Minerals</td>
<td>0.31</td>
<td>14.5</td>
<td>210</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>50 Top Companies</td>
<td>0.38</td>
<td>18.3</td>
<td>336.2</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Price Index (TEPIX)</td>
<td>0.34</td>
<td>16.3</td>
<td>267</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>SandP Index</td>
<td>Insignificant</td>
<td>-0.23</td>
<td>0.05</td>
<td>0.82</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: ARIMA Model Using Markov Switching Model

<table>
<thead>
<tr>
<th>Index Name</th>
<th>Type Of Regime</th>
<th>Coefficient AR (1)</th>
<th>LOG(SIGMA)</th>
<th>Constant Duration Of The Regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks</td>
<td>Low Turbulence</td>
<td>0.31</td>
<td>-6</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>High Turbulence</td>
<td>0.25</td>
<td>-4.1</td>
<td>0.48</td>
</tr>
<tr>
<td>Cement</td>
<td>Low Turbulence</td>
<td>0.37</td>
<td>-5.5</td>
<td>0.496</td>
</tr>
<tr>
<td></td>
<td>High Turbulence</td>
<td>0.43</td>
<td>-4.5</td>
<td>0.504</td>
</tr>
<tr>
<td>Oil Products</td>
<td>High Turbulence</td>
<td>Insignificant</td>
<td>-2.7</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Low Turbulence</td>
<td>0.28</td>
<td>-4.4</td>
<td>0.94</td>
</tr>
<tr>
<td>Machinery</td>
<td>High Turbulence</td>
<td>0.31</td>
<td>-4.1</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>Low Turbulence</td>
<td>0.3</td>
<td>-5.1</td>
<td>0.63</td>
</tr>
<tr>
<td>Chemicals</td>
<td>Low Turbulence</td>
<td>0.22</td>
<td>-5.8</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>High Turbulence</td>
<td>.34</td>
<td>-4.2</td>
<td>0.45</td>
</tr>
<tr>
<td>Automobiles</td>
<td>Low Turbulence</td>
<td>0.2</td>
<td>-4.7</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>High Turbulence</td>
<td>0.26</td>
<td>-3.8</td>
<td>0.64</td>
</tr>
<tr>
<td>Sugar</td>
<td>Low Turbulence</td>
<td>0.43</td>
<td>-5.1</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>High Turbulence</td>
<td>0.29</td>
<td>-4</td>
<td>0.58</td>
</tr>
<tr>
<td>Food Except For Sugar</td>
<td>Low Turbulence</td>
<td>0.31</td>
<td>-5.5</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>High Turbulence</td>
<td>0.31</td>
<td>-4.1</td>
<td>0.44</td>
</tr>
<tr>
<td>Metal Minerals</td>
<td>Low Turbulence</td>
<td>0.32</td>
<td>-5.5</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>High Turbulence</td>
<td>0.28</td>
<td>-3.9</td>
<td>0.48</td>
</tr>
<tr>
<td>50 Top Companies</td>
<td>Low Turbulence</td>
<td>0.34</td>
<td>-5.7</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>High Turbulence</td>
<td>0.36</td>
<td>-4.4</td>
<td>0.38</td>
</tr>
<tr>
<td>Price Index (TEPIX)</td>
<td>Low Turbulence</td>
<td>0.27</td>
<td>-5.9</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>High Turbulence</td>
<td>0.34</td>
<td>-4.5</td>
<td>0.73</td>
</tr>
<tr>
<td>SandP Index</td>
<td>Low Turbulence</td>
<td>-0.08</td>
<td>-5.2</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>High Turbulence</td>
<td>Insignificant</td>
<td>-4.2</td>
<td>0.32</td>
</tr>
</tbody>
</table>
In this study according to the research findings, it was shown that the error term in eleven indicators of bank, cement, machinery, and chemicals, other mines, automobiles, sugar, food except for sugar, metal minerals, top 50 companies index, and Tehran Stock Exchange price index (TEPIX) was not white noise. As a result, the ARIMA model was significant for these eleven indicators. After estimating the ARIMA model using OLS regression in the 12 indices studied in this research, as shown in columns 3 and 4 of Table 2, the F-statistic and t-statistic were not significant only in the SandP index of the New York Stock Exchange but were significant in the other 11 indexes of Tehran Stock Exchange. As a visible pattern in the results of this study, there was a direct relationship between the coefficient of AR (1) and the values of T and F statistics.

As shown in columns 3 and 5 of Table 3, after estimating the ARIMA model using Markov Switching Model, the coefficient of AR (1) was only significant for the turbulent regime of the SandP index of the New York Stock Exchange with a constant duration of 32% and the turbulent regime of the oil products index of Tehran Stock Exchange with a constant duration of 6%, of the random walk theory, followed. Using equation 4 in this research, the effect of past-oriented behavioral bias on each index was calculated using the exponential function of coefficient AR (1). The rationale for using the exponential function was to increase the past-oriented behavioral bias incrementally. As shown in columns 1 and 4 of Table 4, as the coefficient AR (1) increases, the effect of behavioral biases increases. Column 5 of Table 4 shows the highest rate of retrospective behavioral bias is related to the cement index (57%), followed by the top 50 companies index (46%), chemicals (41%), price index (40%), sugar index (39%), machinery index (38%), food except for sugar (37.7%), metal minerals index (36%), automobiles index (30%), Bank index (30%), and finally oil products (12%). The SandP index of the New York Stock Exchange was without past-oriented behavioral bias.

<table>
<thead>
<tr>
<th>Index name</th>
<th>Coefficient AR (1)</th>
<th>POBB</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks</td>
<td>0.259</td>
<td>29.7%</td>
<td>10</td>
</tr>
<tr>
<td>Cement</td>
<td>0.45</td>
<td>57%</td>
<td>1</td>
</tr>
<tr>
<td>Oil Products</td>
<td>0.12</td>
<td>12%</td>
<td>11</td>
</tr>
<tr>
<td>Machinery</td>
<td>0.324</td>
<td>38%</td>
<td>6</td>
</tr>
<tr>
<td>Chemicals</td>
<td>0.35</td>
<td>41%</td>
<td>3</td>
</tr>
<tr>
<td>Automobiles</td>
<td>0.264</td>
<td>30%</td>
<td>9</td>
</tr>
<tr>
<td>Sugar</td>
<td>0.33</td>
<td>39%</td>
<td>5</td>
</tr>
<tr>
<td>Food Except For Sugar</td>
<td>0.32</td>
<td>37.7%</td>
<td>7</td>
</tr>
<tr>
<td>Metal Minerals</td>
<td>0.31</td>
<td>36%</td>
<td>8</td>
</tr>
<tr>
<td>50 Top Companies</td>
<td>0.38</td>
<td>46%</td>
<td>2</td>
</tr>
<tr>
<td>Price Index (TEPIX)</td>
<td>0.34</td>
<td>40%</td>
<td>4</td>
</tr>
<tr>
<td>SandP Index</td>
<td>Insignificant</td>
<td>Zero</td>
<td>12</td>
</tr>
</tbody>
</table>

For example, to calculate a Past-oriented behavioral bias of the bank index

\[
POBB = \left[\exp\left(\text{Coefficient AR (1)} - 1\right) \right] \times (\text{CDR1} + \text{CDR2}) = \left[\exp(0.26) - 1 \right] \times (0.52 + 0.48) = 0.297
\]

Also, the Past-oriented behavioral bias of the cement index was calculated as follows.

\[
POBB = \left[\exp\left(\text{Coefficient AR (1)} - 1\right) \right] \times (\text{CDR1} + \text{CDR2}) = \left[\exp(0.45) - 1 \right] \times (0.496 + 0.504) = 0.57
\]

Also, the Past-oriented behavioral bias of the oil products index was calculated as follows.

\[
POBB = \left[\exp\left(\text{Coefficient AR (1)} - 1\right) \right] \times (\text{CDR1} + \text{CDR2}) = \left[\exp(0.12) - 1 \right] \times (0 + 0.94) = 0.12
\]
And Past-oriented behavioral bias of the SandP index was calculated as follows.

\[
POBB = \left[EXP\left(\text{Coefficient AR (1)}\right) - 1 \right] \% \times (CDR1 + CDR2) = \left[EXP\left(0\right) - 1 \right] \times (0.68 + 0.32) = 0
\]

5 Conclusions and Suggestions

The purpose of this study was to introduce the past-oriented behavioral bias, which is related to the past information that influences investor behavior and has a lot to do with the random walk theory. The next step in this research was to design an appropriate model for past-oriented behavioral bias, which is closely related to random walk theory. To this end, the trend of changes in 9 different industries, including bank, cement, oil products, machinery, chemicals, automobiles, sugar, food except for sugar, metal minerals, index of 50 Top Companies and in Tehran Stock Exchange Price Index (TEPIX) and the SandP index of the New York Stock Exchange was investigated from 2011/25/03 to 2019/19/03 using Markov switching model. Given the close relationship of retrospective behavioral bias with random walk theory, first, the degree of adherence of these 02 indices to the random walk theory was evaluated using three measures of the rate of the stickiness of price returns, including Durbin-Watson statistics, simple auto-correlation coefficients hypothesis, and Lagrange Multiplier test of serial correlation using the simple OLS regression model.

The findings showed that the disturbance component was not white noise for 11 indices except for the SandP index of the New York Stock Exchange, so the prices in these indices did not follow a random walk. It should be noted that lack of adherence of price returns to the random walk hypothesis and bias or behavioral sourcing of real and legal investors are due to lack of trust in information dissemination mechanism as well as psychological and sociological factors, each of which should be explored in future research. This study, as Tehrani et al. [61], showed non-following to a random walk in the Tehran Stock Exchange. On the other hand, the advantage of this paper was the development of a new model for measuring past-oriented behavioral bias based on random walk theory. Also, as we concluded, Tajdini et al. [56- 57] showed that Tehran Stock Exchange and Tehran foreign exchange rate market are affected by behavioral biases. In general, behavioral biases make sense in two general forms of acceleration theory, including the continuation of the current trend in the ARIMA model with a positive coefficient and the opposite theory, i.e., the opposite of the current trend that has a negative ARIMA coefficient. Moreover, the results obtained using Markov Switching and ARIMA models showed that the ARIMA model was not significant in the turbulent regime of the SandP index of the New York Stock Exchange with 32% shelf life and the oil products index from among the 11 indices of Tehran Stock Exchange with 6% shelf life. It was significant, however, in all other indices.

Hence, by comparing the performance of the SandP index of New York Stock Exchange and the Index of Petroleum Products, the results of this study showed the SandP index of the New York Stock Exchange adhered to the random walk theory more than 5 times greater than the oil products index of the Tehran Stock Exchange Furthermore, using the past-oriented behavioral bias model, it was found that the cement index had the highest rate (57%) of the past-oriented behavioral bias, followed by the top 50 companies index (46%), chemicals (41%), oil products index (12%), and the SandP index of the New York Stock Exchange without the past-oriented behavioral bias. We suggest that other industries will check the Tehran Stock Exchange and compare their indexes with foreign stock markets. In addition, we suggest this model will develop for current-oriented behavioral bias.
References

Past-oriented behavioral bias: A study on S&P & TEPIX indexes

Doi: 10.1016/j.rausp.2016.06.005

