Cost Malmquist Productivity index in non competitive environment of price in Data Envelopment Analysis and the use of it in the dealings of the Iranian Stock Exchange

Document Type : Research Paper


Department of Mathematics, Khorramabad branch, Islamic Azad University, Khorramabad, Iran



The Malmquist Index (MI) is a tool for analyzing the productivity. Considering its importance, different suggestions and studies have been offered on the Cost Malmquist Productivity Index (CMPI) according to existing conditions of decision making units (DMUs) and the available data. The present research aimed to provide a CMPI in a non-competitive environment in which the price data changes from one evaluation unit to another. Given the deficiency of Farrel’s cost efficiency (1957) and also the cost efficiency model presented by Tone (2002), and by taking advantage of the idea of changing the productivity of DMUs at different time periods, we presented cost Malmquist Productivity Index in the presence of non-identical prices for various DMUs, Then, we evaluate the data of the Iranian Stock Exchange by aforementioned Cost Malmquist Productivity index


[1]: Afsharian, M., & Ahn, H. (2015). The overall Malmquist index: a new approach for measuring productivity        changes over time. Annals of Operations Research226(1), 1-27, Doi: 10.1007/s10479-014-1668-5.
[2]: Althin, R. (2001). Measurement of productivity changes: two Malmquist index approaches. Journal of productivity Analysis16(2), 107-128,Doi: 10.1023/A:1011682625976.
[3]: Agah, M., Malekpoor, H., Bagheri, A., Investigating the Effect of Financial Constraints and Different Levels of Agency Cost on Investment Efficiency. Advances in Mathematical Finance and Applications, 2017, 2(4), P. 31-47. Doi: 10.22034/amfa.2017.536264
[4]: Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica: Journal of the Econometric Society, 1393-1414, Doi: 10.2307/1913388.
[5]: Charnes  .A ,Cooper .w.w , &Rhodes .E. (1978). "Mesuring the efficiency of decision making units. European Journal Of Operational Research". 2,429-4410, Doi: 10.1016/0377-2217(78)90138-8.
[6]: Cooper, W. W. (2007). Seiford. LM and Tone, K.(2000) Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software, Doi: 10.4236/ajor.2016.62015
[7]: Dibachi, H., Behzadi, M.H., Izadikhah, M., Stochastic multiplicative DEA model for measuring the efficiency and ranking of DMUs under VRS technology, Indian Journal of Science and Technology, 2014, 7 (11), P. 1765–1773. Doi: 10.17485/ijst/2014/v7i11.19
[8]: Emrouznejad, A., Rostamy-Malkhalifeh, M., Hatami-Marbini, A., Tavana, M., & Aghayi, N. (2011). An overall profit Malmquist productivity index with fuzzy and interval data. Mathematical and Computer Modelling54(11-12), 2827-2838, Doi: 10.1016/j.mcm.2011.07.003.
[9]: Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the RoyalStatistical Society. SeriesA (General), 120(3), 253-290, Doi: 10.2307/2343100.
 [10]: Fuentes, H. J., Grifell-Tatjé, E., & Perelman, S. (2001). A parametric distance function approach for Malmquist productivity index estimation. Journal of Productivity Analysis15(2), 79-94, Doi: 10.1023/A:1007852020847.
[11]: Grifell-Tatjé, E., & Lovell, C. K. (1999). A generalized Malmquist productivity index. Top7(1), 81-101, Doi: 10.1155/2013/607190.
[12]: Izadikhah, M., Farzipoor Saen, R., Ranking sustainable suppliers by context-dependent data envelopment analysis. Ann Oper Res, 2020, 293, P.607–637, Doi: 10.1007/s10479-019-03370-4
[13]: Kao, C. (2017). Measurement and decomposition of the Malmquist productivity index for parallel production systems. Omega67, 54-59, Doi: 10.1016/
[14]: Kao, C., & Hwang, S. N. (2014). Multi-period efficiency and Malmquist productivity index in two-stage production systems. European Journal of Operational Research232(3), 512-521, Doi: 10.1016/j.ejor.2013.07.030.
[15]: Karbasi Yazdi, H., Mohammadian, M., Effect of Profitability Indices on the Capital Structure of Listed Companies in Tehran Stock Exchange. Advances in Mathematical Finance and Applications, 2017, 2(3), P. 1-11. Doi: 10.22034/amfa.2017.533085
[16]: Lozano-Vivas, A., & Humphrey, D. B. (2002). Bias in Malmquist index and cost function productivity measurement in banking. International Journal of Production Economics76(2), 177-188, Doi: 10.1016/s0925-5273(01)00162-1.
[17]: Nishimizu, M., & Page, J. M. (1982). Total factor productivity growth, technological progress and technical efficiency change: dimensions of productivity change in Yugoslavia, 1965-78. The Economic Journal92(368), 920-936,Doi: 10.2307/2232675.
[18]: Malmquist, S. (1953). Index numbers and indifference surfaces. Trabajos de estadística, 4(2), 209-242, Doi: 10.1007/BF03006863.
[18]: Maniadakis, N., & Thanassoulis, E. (2004). A cost Malmquist productivity index. European Journal of Operational Research154(2), 396-409, Doi: 10.1016/S0377-2217(03)00177-2.
[19]: Orea, L. (2002). Parametric decomposition of a generalized Malmquist productivity index. journal of Productivity Analysis18(1), 5-22, Doi: 10.1023/A:1015793325292.
[19]: Rezaei, N., Elmi, Z., Behavioral Finance Models and Behavioral Biases in Stock Price Forecasting. Advances in Mathematical Finance and Applications, 2018, 3(4), P. 67-82. Doi: 10.22034/amfa.2019.576127.1118
[20]: Thanassoulis, E., Shiraz, R. K., & Maniadakis, N. (2015). A cost Malmquist productivity index capturing group performance. European Journal of Operational Research241(3), 796-805, Doi: 10.1016/j.ejor.2014.09.002.
[20]: Tohidi, G., Razavyan, S., & Tohidnia, S. (2012). A global cost Malmquist productivity index using data envelopment analysis. Journal of the Operational Research Society63(1), 72-78, Doi: 10.1057/jors.2011.23.
[21]: Tohidi, G., & Razavyan, S. (2013). A circular global profit Malmquist productivity index in data Envelopment analysis. Applied Mathematical Modelling37(1-2), 216-227, Doi: 10.1016/j.apm.2012.02.026.
[22]: Tone .K, (2002), "A Strang Caso Of the Cost and Allocative Efficiencies in DEA". Journal of the Opreational Research Sociely 53,pp.1225-1231, Doi: 10.1057/palgrave.jors.2601438.
[23]: Tone, K., Toloo, M., Izadikhah, M., A modified slacks-based measure of efficiency in data envelopment analysis, European Journal of Operational Research, 2020, 287 (2), P. 560-571, Doi: 10.1016/j.ejor.2020.04.019.
[24]: Tone, K., & Tsutsui, M. (2007). Decomposition of cost efficiency and its application to Japanese-US electric utility comparisons. Socio-Economic Planning Sciences41(2), 91-106, Doi: 10.1016/j.seps.2005.10.007.
[25]: Walheer, B. (2018). Disaggregation of the cost Malmquist productivity index with joint and output-specific inputs. Omega75, 1-12, Doi: 10.1016/
[26]: Wang, Y. M., & Lan, Y. X. (2011). Measuring malmquist productivity index: A new approach based on double frontiers data envelopment analysis. Mathematical and Computer Modelling54(11-12), 2760-2771, Doi: 10.1016/j.mcm.2011.06.064.
 [27]: Yu, M. M. (2007). The capacity productivity change and the variable input productivity change: A new decomposition of the Malmquist productivity index. Applied mathematics and computation185(1), 375-381, Doi: 10.1016/j.amc.2006.06.113.