Designing A Mixed System of Network DEA for Evaluating the Efficiency of Branches of Commercial Banks in Iran

Document Type : Research Paper


1 Ph.D. student of Industrial Engineering, Kish International Campus, University of Tehran

2 School of Industrial and Systems Engineering, College of Engineering, University of Tehran,Tehran

3 Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran

4 School of Industrial and Systems Engineering, College of Engineering, University of Tehran, and Ted Rogers School of Information Technology Management, Ryerson University, Toronto, ON, Canada



One of the most important applications of data envelopment analysis tech-nique is measuring the efficiency of bank branches. Performance measure-ment in the banking industry is important for several groups, including bank managers, customers, investors, and shareholders. The purpose of this study is to examine and design a mixed structure to measure the efficiency of branches of Iranian banks according to their policies. In order to obtain the efficiency of the structure divisions proposed in this study, a slack-based NDEA model was selected to solve its mathematical model. The study sam-ple consists of 31 branches of a large commercial bank in Iran. The ad-vantage of this research to previous studies is that the result will be more realistic considering the inputs and outputs consistent with Iran's banking conditions.


Main Subjects

[1]         Paradi JC, Rouatt S, Zhu H. Two-stage evaluation of bank branch efficiency using data envelopment analysis, Omega, 2011, 39(1), P.99-109. Doi:10.1016/
[2]         Wang K, Huang W, Wu J, Liu Y-N. Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA. Omega, 2014, 44, P.5-20. Doi:10.1016/
[3]         Huang C-W, Chiu Y-H, Lin C-H, Liu H-H. Using a hybrid system DEA model to analyze the influence  of authomatic banking service on commercial bank’s efficiency, J. Oper Res Soc Japan, 2012, 55(4), P. 209-224. Doi: 10.15807/jorsj.55.209.
[4]         Kao C. Network data envelopment analysis: A review. Eur. J. Oper. Res., 2014, 239 (1), P.1-16. Doi:10.1016/j.ejor.2014.02.039.
[5]         Kao C. Network Data Envelopment Analysis: Foundations and Extensions. 240. Springer; 2017. Doi:10.1007/978-3-319-31718-2_7.
[6]         Färe, R., Grosskopf S. Network DEA, Springer, Boston,2000, Doi:10.1007/978-0-387-71607-7_12.
[7]         Charnes A, Cooper WW, Rhodes E. Measuring the efficiency of decision making units., Eur. J. Oper. Res. 1978, 2(6), P.429-444. Doi:10.1016/0377-2217(78)90138-8.
[8]         Benston GJ. Branch banking and economies of scale, J. Finance, 1965, 20(2), P.312-331. Doi: 10.1111/j .1540-6261.1965.tb00212.x.
[9]         Greenbaum SI. Competition and Efficiency in the Banking System--Empirical Research and Its Policy Implications, J Polit Econ., 1967, 75(4) , P.461-479.Doi:10.1086/259318.
[10]       Avkiran NK. Opening the black box of efficiency analysis: an illustration with UAE banks. Omega, 2009, 37(4), P.930-941. Doi:10.1016/
[11]       Lin T-Y, Chiu S-H. Using independent component analysis and network DEA to improve bank performance evaluation. Econ Model, 2013, 32, P.608-616.Doi:10.1016/j.econmod.2013.03.003.
[12]       Tone K, Tsutsui M. Network DEA: A slacks-based measure approach, Eur. J. Oper. Res., 2009, 197(1), P.243-252.Doi:10.1016/j.ejor.2008.05.027.
[13]       Goyal J, Aggarwal A. Efficiency and technology gaps in Indian banking sector: Application of meta-frontier directional distance function DEA approach. J. Financ. Data, Sci., 2018, 10, P.1-17. Doi:/10.10 16/j.jfds.2018.08.002.
[14]       Wanke P, Maredza A, Gupta R. Merger and acquisitions in South African banking: A network DEA model. Res Int Bus Financ. 2017,41,P.362-376. Doi:10.1016/j.ribaf.2017.04.055.
[15]       Abreu ES De, Kimura H, Sobreiro VA. What Is Going On with Studies on Banking Efficiency? Res. Int. Bus. Financ., 2019, 47(C), P. 195-219..Doi:10.1016/j.ribaf.2018.07.010.
[16]       Fernandes FDS, Stasinakis C, Bardarova V. Two-stage DEA-Truncated Regression: Application in banking efficiency and financial development. Expert Syst Appl, 2018, 96, P.284-301. Doi:10.1016/ wa.2017.12.010.
[17]       Zhou X, Xu Z, Chai J, Yao L, Wang S, Lev B. Efficiency evaluation for banking systems under uncerta-inty: A multi-period three-stage DEA model. Omega. 2018,(accepted) Doi:10.1016/ 8.05.012.
[18]       Keramati A, Azadeh MA, Mehran-Gohar M, Afshari-Mofrad M. Investigating the effects of information technology investment on bank performance: considering the role of environmental dynamism and strategy. Int J Appl Decis Sci., 2012, 5(1), P.32-46. Doi: 0.1504/IJADS.2012.044945.
[19]       Ebrahimnejad A, Tavana M, Lotfi FH, Shahverdi R, Yousefpour M. A three-stage data envelopment analysis model with application to banking industry. Measurement. 2014, 49, P.308-319. Doi:10.1016/j. measurement.2013.11.043.
[20]       Jahanshahloo GR, Amirteimoori AR, Kordrostami S. Multi-component performance, progress and regress measurement and shared inputs and outputs in DEA for panel data: an application in com-mercial bank branches. Appl Math Comput., 2004, 151(1), P.1-16. Doi:10.1016/S0096-3003(03)00318-7.
[21]       Amirteimoori A, Nashtaei RA. The role of time in multi-component efficiency analysis: An application. Appl Math Comput. 2006, 177(1),P.1-17. Doi:
[22]       Izadikhah M. Improving the Banks Shareholder Long Term Values by Using Data Envelopment Analysis Model. Adv Math Financ Appl. 2018, 3(2), P.27-41. Doi:10.22034/AMFA.2018.540829.
[23]       Izadikhah M, Tavana M, Di Caprio, D., A novel two-stage DEA production model with freely distributed initial inputs and shared intermediate outputs. Expert Syst Appl., 2018, 99, P. 213-230. Doi:10.1016/j.eswa.2017. 11.005.
[24]       Tavana M, Izadikhah M, Di Caprio, D., Saen RF. A New Dynamic Range Directional Measure for Two-Stage Data Envelopment Analysis Models with Negative Data. Comput Ind Eng. 2018, 115, P. 427-448, Doi:10.1016/j .cie.2017.11.024.
[25]   Esfandiar M, Saremi M, Nia HJ. Assessment of the Efficiency of Banks Accepted in Tehran Stock Exchange Using the Data Envelopment Analysis Technique. Adv Math Financ Appl. 2018, 3(2), P.1-11. Doi:10.22034/AMFA.2018.540815.
[26]     Kao C. Efficiency decomposition in network data envelopment analysis: A relational model. Eur J Oper Res. 2009, 192, P.949-962. Doi:10.1016/j.ejor.2007.10.008.
Volume 4, Issue 1
March 2019
Pages 1-13
  • Receive Date: 07 January 2019
  • Revise Date: 23 February 2019
  • Accept Date: 23 February 2019
  • First Publish Date: 01 March 2019